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中文摘要：激子扩散在许多有机半导体光电器件的功能中起着至关重要的作用，其中精确的描述需要异质

结的精准种植。因为高维随机空间中异质结的参数化远远超出了经典仿真工具的功能。在这里，我们开发了一种

基于准蒙特卡洛采样生成训练数据集，并使用深度神经网络提取激子扩散长度对表面粗糙度的函数，其中高精度

和空前的效率，产生大量的信息在整个参数空间上。我们的方法提供了一种新的策略来分析界面对激子扩散的影

响，并有望通过量身定制的光电功能来辅助实验设计。

英文摘要：Exciton diffusion plays a vital role in the function of many organic semiconducting opto-electronic

devices, where an accurate description requires precise control of heterojunctions. This poses a challenging problem

because the parameterization of heterojunctions in high-dimensional random space is far beyond the capability of

classical simulation tools. Here, we develop a novel method based on Quasi-Monte Carlo sampling to generate the

training data set and deep neural network to extract a function for exciton diffusion length on surface roughness with

high accuracy and unprecedented efficiency, yielding an abundance of information over the entire parameter space. Our

method provides a new strategy to analyze the impact of interfacial ordering on exciton diffusion and is expected to

assist experimental design with tailored opto-electronic functionalities.
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Introduction

Over the past decades, much attention has been paid on organic semiconductors for applications in

various opto-electronic devices[1][2][3][4].These materials include small molecules[5][6], oligomers[7][8] and

polymers[9][10]. Exciton diffusion is one of the key processes behind the operation of organic

opto-electronic devices[11][12][13]. From a microscopic perspective, exciton, a bound electron-hole pair, is

the elementary excitation in opto-electronic devices such as light emitting diodes and organic solar

cells. The exciton diffusion length (EDL) is the characteristic distance that excitons are able to travel

during their lifetime [6]. A short diffusion length in organic photovoltaics limits the dissociation of

excitons into free charge [14][15]. Conversely, a large diffusion length in organic light emitting diodes

may limit luminous efficiency if excitons diffuse to non-radiative quenching sites[16].

As quasi-particles with no net charge, excitons are difficult to probe directly by electrical means

[17]. This is particularly true in organic semiconductors where the exciton binding energy is 1

electronvolt[18]Reported techniques to measure EDL include photoluminescence (PL) surface

quenching[6][14][19][20][21][22][23][24][25], time-resolved PL bulk quenching modeled with a Monte Carlo (MC)

simulation[10][26], exciton-exciton annihilation[27][28][29][30], modeling of solar cell photocurrent

spectrum[31][32][33][34][35][36][37][38][39], time-resolved microwave conductance[40][41], spectrally resolved PL

quenching[42][43][44] and F rster resonance energy transfer theory[42][45][46]. From a theoretical

perspective, the minimal modeling error is given by the diffusion equation model [47], which is

employed in the current work.

To be precise, the device used in PL surface quenching experiment includes two layers of organic

materials with thickness ranging from dozens of nanometers to hundreds of nanometers. One layer of

material is called donor and the other is called acceptor or quencher according to the difference of their



3

chemical properties. Under the illumination of solar lights, excitons are generated in the donor layer

and diffuse in the donor. Due to the exciton-environment interaction, some excitions die out and emit

photons which lead to the PL. The donor-acceptor interface serves as the absorbing boundary while

other boundaries serve as reflecting boundaries due to the tailored properties. Since the donor-acceptor

interface is not exposed to the air/vacuum and the resolution of the surface morphology is limited by

the resolution of atomic force microscopy, the interface is subject to an uncertainty. It is found that the

fitted EDL is sensitive to the uncertainty in some scenarios. From a numerical perspective, the random

interface requires a parametrization in high-dimensional random space, which is prohibitively

expensive for any simulation tool. For example, MC method overcomes the curse of dimensionality but

has very low accuracy[48]. Stochastic collection method has high accuracy but is only affordable in low

dimensional random space[49]. Asymptotics-based method is efficient but its accuracy relies heavily on

the magnitude of randomness[50]. In the current work, we propose a novel method based on deep

learning with high accuracy and unprecedented efficiency.

Recently, increasing attentions have been paid to apply machine learning (ML) techniques to

materials-related problems. For example, the classification of crystal structures of transition metal

phosphide via support vector machine[51] leads to the discovery of a novel phase[52]. Likewise, a hybrid

probabilistic model based on high-throughput first-principle computation and ML was developed to

identify stable novel compositions and their crystal structures[53]. Physical parameters such as band

gap[54][55], elastic constants[54][56], and Debye temperature[54] have also been predicted using an array of

ML techniques. In another line, deep learning (DL) in computer science has had great success in text

classification[57], computer vision[58], natural language processing[59], and other data-driven

applications[60][61] . Recently, DNNs have been applied to the field of numerical analysis and scientific

computing, like inverse problems [62] and dimensional partial differential equations (PDEs)[63][64][65][66]

One significant advantage of DL is its strong ability to approximate a complex function in high

dimensions and extract features with high precision using composition of simple nonlinear units.
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Meanwhile, benefiting from recent advances in parallel graphics processing unit - accelerated

computing, huge volumes of data can be put into the DL architecture for training.

In this work, we employ DL to extract a complex function of EDL in terms of the random

interface parametrized in a high-dimensional space. The fitted function has rich information, which

explains a few interesting experimental observations. Compared to classical simulation tools, our

approach has the following features: quasi-Monte Carlo (QMC) sampling[67][68][69] for data collection

and ResNet[70] for training. The size of data in the former step grows only linearly with respect reto the

dimension of random space, thus our approach overcomes the curse of dimensionality (with possibly a

logarithmic growing factor depending on the dimension). With the usage of ResNet in the latter step, a

complex function can be extracted with high accuracy.

Our main contribution is the use of QMC sampling to explore the high-dimensional space of

surface roughness, i.e., generating realizations of surface roughness by the QMC method; see the left

column in Fig. 1. Once a surface roughness is generated, an inverse problem is solved to produce EDL.

DL is then used to construct a map between surface roughness and EDL; see the center column in Fig.

1. Afterwards, the full landscape of EDL on surface roughness can be generated and further analyzed;

see the right column in Fig. 1. Generally speaking, QMC method has an approximation accuracy

independent of dimension which scales inversely with respect to the number of samples (with possibly

a logarithmic factor depending on dimension). This significantly outperforms Monte-Carlo method.

Other sampling strategies, such as Latin Hypercube Sampling, Hammersley Sequence Sampling, and

Latin hypercube-Hammersley sequence sampling, shall also perform better. ResNet is used to construct

the map between surface roughness and EDL. Note that the data generation dominates the whole

simulation since each data requires solves an inverse problem involving solving an elliptic problem

over a curved domain. Therefore, even though there may be better network structures in the sense of

accuracy or efficiency, we stress that the one used in this paper has already provided a great choice and

only linear growth of number of samples with respect to dimension is needed for accurate training. No
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significant change is found if more layers or parameters are added in the ResNet structure we have

used.

The rest of this paper is organized as follows. In Section 2, we introduce models for exciton

diffusion in 1D, 2D, and 3D, respectively. In Section 3, we propose a QMC-machine learning method

based on QMC sampling and ResNet. Using a series of numerical simulations in Section 4, we show

that the QMC-machine learning method is both accurate and efficient. Moreover, modeling error and

mode dependence can be extracted from the fitted EDL, which explains a few interesting experimental

observations. Conclusions are drawn in Section 5.

Model description

（一）1D model

An exciton that diffuse in the donor follows a diffusion-type equation over a 1D random domain

where the interface is reduced to a random point .

The corresponding diffusion equation is

where is the EDL to be extracted, is the exciton density, is the normalized

exciton generation function by the transfer matrix method[71]. serves as the reflecting

boundary and Neumann boundary condition is imposed on the boundary exposed in air.

serves as the absorbing boundary and homogenous Dirichlet boundary condition is imposed on the

donor-acceptor interface and is the input of the network in the 1D case. The photoluminescence

(PL) is
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where the integral is approximated by the Simpson's rule in the simulation.

The 1D model is commonly used to extract the exciton diffusion length (EDL) due to its

simplicity and model accuracy[6][47]. However, the 1D model does not always work well[6][50] and we

introduce 2D and 3D models for the same problem. They are more realistic models for exciton

diffusion. We shall demonstrate their differences in Section 4.

（二）2D model

The 2D model is defined over a random domain

where the interface is a random line parametrized by

where is the magnitude of length due to the roughness limited by the resolution of atomic force

microscopy, are i.i.d. random variables, and controls the decay

rate of spatial modes . Note that are the input of the network in the 2D case. The rougher

the interface is, the closer the approaches . Note that the dimensionless magnitude of

randomness/perturbation is defined as , which is used in asymptotic-based approaches[50][72].

Given the surface roughness measured in an experiment, parameters in (5) can be extracted via discrete

Fourier transform.

The corresponding diffusion equation is

and the PL is

Note that in (7) is used for the consideration of modeling error between 1D and 2D

models [50].
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（三）3D model

The 3D random domain can be defined as

Here the donor-acceptor interface is parameterized by

where is the magnitude of length due to the roughness limited by the resolution of atomic

force microscopy, are i.i.d. random variables, ,

, and controls the decay rate of spatial modes

. The rougher the interface is, the closer the approaches . {Note that

are the input of the network in the 3D case. Given the surface roughness

measured in an experiment, parameters in (2) can be extracted via discrete Fourier transform.

The 3D diffusion equation reads as

The PL is computed by

At the formal level, when , the PL of 3D model defined by (11) reduces to the PL of

2D model defined by (7), and further they reduce to the PL of 1D model defined by (3) as

.Again, Note that in (11) is used for the consideration of modeling error

between 1D and 3D models.

In the experiment, PL data are measured by a series of bilayer devices with different

thicknesses , where is the thickness of the -th donor layer. Since there are
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not enough experimental data, we generate the reference PL data by solving Equation (2) with a

prescribed and without surface roughness.

（四）Newton's method for the inverse problem

The optimal EDL is expected to reproduce the experimental date in the

sense of minimized mean square error (MSE)

where notations are based on 3D model.

Newton's method is used to solve (12) for .

Given , for , until convergence, Newton's method for (12) solves

with given by line search[73].

The calculated is defined as . Therefore, for different parameters

Figure 1: Flow chart of the deep learning method for extracting exciton diffusion length over the

parameter space. Left: data generation; Middle: data training; Right: data prediction. In the stage of

data generation, quasi-Monte Carlo method is used to sample the random space, and the actual exciton

diffusion length is generated by solving the diffusion equation model. In the stage of data training, a

complex function is approximated over the entire parameter space. In the stage of

data prediction, given the full landscape of , both qualitative and quantitative

information can be extracted.
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, we get a data set with the

size of data set.

A QMC-machine learning method

The main difficulty of 2D and 3D models in random domains is the high dimension of random

variables, and thus it is very difficult to solve these models with accurate results using classical

simulation tools, such as MC method, stochastic collocation method, and asymptotics-based methods.

Therefore, we propose a QMC-machine learning method to overcome the curse of dimensionality.

Our approach consists of four major components: QMC sampling over the

high-dimensional random space; diffusion equation model for data generation; ResNet for

training to approximate a complex function of EDL; Information extraction for analysis.

The flow chart of this process can be seen in Fig. 1. The models are introduced in Section

2 and information extraction for analysis will be discussed in Section 4. For completeness,

we introduce QMC sampling and ResNet in this section.

（一） Quasi-Monte Carlo sampling

In the sampling stage of data preparation, a large is needed to ensure that the extracted

function of EDL has the desired accuracy. There are two classical choices: uniform sampling and

random sampling. For uniform sampling, grows exponentially fast with respect to

and . For example, in the 3D case, if and points are uniformly distributed

for each random variable, the size of training data set is shown in Table 1. For the simulations in our

work, at least three orders of magnitude reduction in the size of data set is found for QMC sampling

strategy. Fig. 2(a) and Fig. 2(b) show the huge advantage of QMC sampling over uniform sampling.

For the same size of training data set, the relative error is and ,
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implying more than two orders of magnitude improvement in the prediction accuracy.

(a) Uniform sampling (b) Uniform sampling

Figure 2: Generalization error of the trained neural network in 2D when the number of random

variables is and points are chosen. The relative error is when uniformly

distributed points are used and the relative error is when points generated by Sobol

sequence are used. The training data is visualized as a line and the testing data is visualized as

scattering points.

On the other hand, if random sampling is used, then we do not have this issue. However, MC

method has poor accuracy . At least millions of data are needed for training. Meanwhile,

for each datum, an inverse problem with the diffusion equation model over a curved domain in 3D has

to be solved. These together make the network training prohibitively expensive. Fortunately, compared

to uniform sampling and MC sampling, QMC sampling provides the best compromise between

accuracy and efficiency. It overcomes the curse of dimensionality and has high accuracy [67][68][69].

Specifically, we use Sobol sequence to generate points over the (high-dimensional) random space. Fig.

3(b) plots the points generated by Sobol sequence, which is a deterministic way to generate points with

better approximation accuracy. QMC sampling has accuracy [67][68][69], which

reduces the size of training data set by orders of magnitudes in comparison with MC method. The size

of data in QMC method grows merely linearly fast with respect to the number of random variables.
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(a) Uniform sampling (b) Uniform sampling

Figure 3: Comparison of two sampling method. (a) Uniform sampling for two random variables with

points; (b) Quasi-Monte Carlo sampling (Sobol sequence) for two random variables with

points.

（二） ResNet

ResNet[70] is used to approximate . A ResNet consists of a series of blocks. One

block is given in Fig. 1 with two linear transformations, two activation functions, and one short cut.

The -th block can be expressed as

Here are input and output of the -th block, and weights

. Sigmoid function, which can be expressed in

is chosen as the activation function to balance training complexity and accuracy.

The last term in (13) is called the shortcut connection or the residual connection. Advantages of

using it are : (1) It can solve the notorious problem of vanishing/exploding gradients automatically. The

vanishing gradient problem means that in some cases the gradient will be vanishingly small, effectively

preventing the weight from changing its value. In the worst case, this may completely stop the neural

network from further training. Also, when activation functions are used whose derivatives can take on

larger values, one risks encountering the related exploding gradient problem. (2) Without adding any

parameters or computational complexity, the shortcut connection performing as an
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mapping can resolve the degradation issue (with the network depth increasing, accuracy gets saturated

and then degrades rapidly).

The fully -layer network can be expressed as

where denotes the set of parameters in the whole network. Note that the input

in the first layer is in and the output of the whole structure is in

. To deal with the problem, we apply two linear transformations on both before putting

it into the ResNet structure and on the output of the ResNet structure. For example, we choose

in the 3D model. Both and have random

variables, and thus . Therefore, we apply two linear transforms: one from a

dimensional vector to a dimensional vector and the other from a dimensional

vector to dimensional vector before and after the ResNet structure. Parameters in these linear

transforms also need to be trained.

The loss function we use is the MSE between the actual EDL given by the

diffusion equation model and the predicted EDL given by the ResNet

where represents the parameter set in the ResNet, is the -th sample, and M is the size of training

data set.

Define the relative error of EDL as

,

which will be used to quantify the approximation accuracy of DL.
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Result and Discussion

（一） Accuracy and discussion

First, we focus on the 2D problem with only one realization, i.e., only one and

. PL data are generated when without any randomness. Accuracy of the

trained neural network in terms of size of the training set is recorded in Table 2.From the results, we

can find that a random field with the slower decay rate ( ) is more difficult to be trained when

uniform sampling is used.

In the literature, a asymptotics-based method has been proposed[50], which only works well for

random interfaces with small magnitudes. The proposed method works for random interfaces with large

magnitudes. For example, consider with random variables ranging over

and , i.e., the dimensionless magnitude of perturbation is about ,

therefore the asymptotics-based method has poor accuracy in this case unless enough terms are used in

the asymptotic expansion. For example, we use the asymptotics-based method with up to the second

order terms[50][72] and the average error is over However, for the QMC-machine learning

method, the relative error is ; see Fig. 4. For a random field with

random variables and realizations , generalization errors of the

trained neural network are plotted in Fig. 5 for , respectively. Again, the

dimensionless magnitude of perturbation is about , our method still works with error smaller

than , which is an acceptable tolerance in experiments.

In 2D, a detailed dependence of EDL on random variables is given in Fig. 6 for

, respectively. In these plots, we visualize EDL on the chosen random variable with

Figure 4: Generalization error of the trained neural network for random variables ranging over

with photoluminescence datum in 2D. The relative error is . The training data

is visualized as a line and the testing data is visualized as scattering points.
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all the other parameters fixed to be . An interesting observation is that the larger the randomness

is, the larger the EDL is. This is in contrast with experimental experiences and 3D results in Fig. 10. We

attribute this observation to the particularity of dimension, which may deserve further experimental

confirmations.

(a (b) (c)

Figure 5: Generalization error of the trained neural network for random variables ranging over

with photoluminescence data and in 2D. (a) The relative error is when

; (b) The relative error is when ; (c) The relative error is

when . The training data is visualized as a line and the testing data is visualized as scattering

points.

Figure 3: Generalization error of the trained neural network for random variables ranging over

with photoluminescence data and in 2D. (a) The relative error is when

; (b) The relative error is when ; (c) The relative error is

when . The training data is visualized as a line and the testing data is visualized as scattering

points.

For the accuracy check in the 3D case, the reference PL data are generated using

realizations with out-of-plane thicknesses nm and nm in the

absence of randomness. Afterwards, randomness is added with , i.e.,
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and are arrays with variables. QMC sampling is used to generate 20000 points

with the corresponding EDL obtained by solving (9)-(12). The first data are used as the

training set, while the remaining data are used to check the predictability of the trained neural network;

see Fig. 7. Relative errors of EDL are and for

, respectively. For completeness, we also plot the convergence history of the

training process in terms of the iteration number in Fig. 8. It is known that the random field is closer to

the white noise when and thus is more difficult to be trained. However, uniform

generalization errors for three different scenarios are observed, implying the robustness of trained

neural network. Moreover, the size of training data set is small in the sense that only linear growth with

respect to the dimension of random variables is observed, in contrast to other sampling techniques

which either have the curse of dimensionality or low accuracy.

（二） Information extraction

The trained neural network fits a high-dimensional function for EDL in terms of surface roughness.

Rich information can be extracted based on the fitted function. We demonstrate this using three

examples.

(a (b (c

Figure 6 :Dependence of exciton diffusion length on random variables in 2D. (a) ;(b) ;

(c) .
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Expectations of EDL in 3D are recorded in Table 3 for . PL data are

generated using the 1D model with the reference EDL nm. When , the EDL is

close to nm, which implies the equivalence between the 3D model and the 1D model. However,

when , the EDL is clearly away from nm. We attribute this difference to the

modeling error between the 1D model and the 3D model with a surface roughness characterized by (9)

with . So far, the 1D model is largely used in the literature to extract the EDL[6][9][47][74]. The

main assumption underlying the modeling is the high crystalline order of the organic material. When

, long-range ordering exists in the random interface, which implicitly connects with the

crystalline ordering of the material. Therefore, in this case, the 3D model and the 1D model are

equivalent. However, when , only short-range ordering exists. As a consequence, the 3D

model and the 1D model are not equivalent any more. This has been verified to be true over a range of

EDLs. Given a surface roughness from the experimental measurement, we can fit a function of form (9)

using discrete Fourier transform, from which we can get the decay rate and thus decide

whether the 1D model is adequate or not. It is worth mentioning that similar results are observed in 2D

using the asymptotics-based approach[50].

(a (b (c

Figure 7: Uniform generalization error of the trained neural network for exciton diffusion length when

. Relative errors of exciton diffusion length are and ,

respectively. The training data is visualized as a line and the testing data is visualized as scattering

points.
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Contour plots of the fitted EDL on random variables are given in Fig. 9 when ,

respectively. In each subfigure, EDL is plotted as a function of and

, where and all the remaining random variables are set to be

. A direct comparison between and in Fig. 9 illustrates the directional

(anisotropic) dependence of EDL on random variables, due to different decay rates of random variables

in the surface roughness.

(a (a (a

Figure 8: Relative error of exciton diffusion length in terms of iteration number for

, respectively.

Fig. 10 provides a detailed demonstration of the dependence of EDL on random variables for

. For illustration, we keep fixed in the left column and

fixed in the right column. One distinct difference between 3D and 2D is that

the maximum EDL is approached in the absence of randomness in 3D, in contrast to the minimum EDL

in 2D. The 3D result is reasonable since experimentally larger EDL is observed if the effect of surface

roughness is minimized, while the 2D result is also of interest due to the unique dimensional

dependence. When , the EDL is more sensitive to the lower-order modes (smaller )

and is less sensitive to the high-order modes (larger ). When , the trend is completely

opposite. This observation provides a detailed connection between surface roughness and EDL, which

also sheds light on the experimental design. Given a surface roughness characterized by (9), we have

the value of , from which we know which mode is of the most importance. Consequently,



18

targeted experimental techniques can be applied to improve the opto-electronic performance.

(a (b

Figure 9: Contour plots of exciton diffusion length on random variables in 3D when ,

respectively.

Conclusion

In summary, we have developed a novel method based on quasi-Monte Carlo sampling and

ResNet to approximate the exciton diffusion length in terms of surface roughness parametrized by a

high-dimensional random field. This method extracts a function for exciton diffusion length over the

entire parameter space. Rich information, such as landscape profile and mode dependence, can be

extracted with unprecedented details. Useful information regarding the modeling error and the

experimental design can be provided, which sheds lights on how to reduce the modeling error and how

to design better experiments to improve opto-electronic properties of organics materials.
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